Graph Theory

Thomas R. Cameron

April 3, 2024

1 Key Topics

Today, we continue our proof that the zero forcing number of a graph is an upper bound on its maximum nullity. For further information and references, see [2].

Let $G=(V, E)$ be a simple graph. Recall that zero forcing is a coloring game on G where an initial set of colored vertices can force non-colored vertices to become colored. In particular, a colored vertex u can force a non-colored vertex v if v is the only non-colored neighbor of u.

Last time we applied the game of zero forcing on G to the process of forcing zeros in a null vector of $A \in \mathcal{S}(G)$. As an example, consider the zero forcing game shown in Figure 1. Note that

$$
C=\{1,5,6\}, C^{[1]}=\{1,4,5,6\}, C^{[2]}=\{1,2,4,5,6\}, C^{[3]}=\{1,2,3,4,5,6\}
$$

Figure 1: Zero-forcing game on a graph
Let $A \in \mathcal{S}(G)$, where G is the graph in Figure 1, and let \mathbf{x} be a null vector of A, where $x_{i}=0$ for all $i \in C$. Then,

$$
A=\left[\begin{array}{cccccc}
d_{1} & a_{12} & a_{13} & 0 & 0 & 0 \\
a_{21} & d_{2} & a_{23} & a_{24} & 0 & 0 \\
a_{31} & a_{32} & d_{3} & 0 & 0 & 0 \\
0 & a_{42} & 0 & d_{4} & a_{45} & a_{46} \\
0 & 0 & 0 & a_{54} & d_{5} & 0 \\
0 & 0 & 0 & a_{64} & 0 & d_{6}
\end{array}\right] \text { and } \mathbf{x}=\left[\begin{array}{c}
0 \\
x_{2} \\
x_{3} \\
x_{4} \\
0 \\
0
\end{array}\right]
$$

Furthermore, row 5 of $A \mathbf{x}=0$ implies that $a_{54} x_{4}=0$, which further implies that $x_{4}=0$. Let

$$
\mathbf{x}^{[1]}=\left[0, x_{2}, x_{3}, 0,0,0\right]^{T}
$$

Then, row 4 of $A \mathbf{x}^{[1]}=0$ implies that $a_{42} x_{2}=0$, i.e., $x_{2}=0$. Let

$$
\mathbf{x}^{[2]}=\left[0,0, x_{3}, 0,0,0\right]^{T}
$$

Then, row 2 of $A \mathbf{x}^{[2]}=0$ implies that $a_{23} x_{3}=0$, i.e., $x_{3}=0$. Therefore, $\mathbf{x}=0$.
In general, we have the following result.
Proposition 1.1. Let $G=(V, E)$ be a simple graph and let $C \subseteq V$ denote a zero-forcing set of G. Also, let $A \in \mathcal{S}(G)$ and let \mathbf{x} denote a null vector of A such that $x_{i}=0$ for all $i \in C$. Then, $\mathbf{x}=0$.

1.1 Zero Forcing and Maximum Nullity

It turns out that Proposition 1.1 implies a bound on the nullity of a matrix $A \in \mathcal{S}(G)$. To make this connection, we first consider the following observation.
Observation 1.2. If U and V are subspaces of \mathbb{R}^{n} and $\operatorname{dim} V>n-\operatorname{dim} U$, then U and V intersect non-trivially, i.e., there exists a non-zero $\mathbf{x} \in U \cap V$.

As an illustration of Observation 1.2, note that every 2 dimensional subspace of \mathbb{R}^{3} is a plane that contains the origin. If U and V are both planes in \mathbb{R}^{3}, then they must intersect at infinitely many points.

Lemma 1.3. Suppose $\alpha \subseteq\{1, \ldots, n\}$ with $|\alpha|<k$ and U is a subspace of \mathbb{R}^{n} with $\operatorname{dim} U=k$. Then, U contains a non zero vector \mathbf{v}, where $v_{i}=0$ for all $i \in \alpha$.

Proof. Let V denote the subspace of vectors \mathbf{v}, where $v_{i}=0$ for all $i \in \alpha$. Let $S=\left\{\mathbf{e}_{j}: j \notin \alpha\right\}$. Then, S forms a basis for V and it follows that

$$
\operatorname{dim} V=|S|>n-k,
$$

since $|\alpha|<k$. By Observation 1.2, U and V intersect non-trivially. Therefore, there exists a non zero vector \mathbf{v} in U such that $v_{i}=0$ for all $i \in \alpha$.

We are now ready to prove that the zero forcing number of a graph is an upper bound on the maximum nullity.

Theorem 1.4 (Proposition 2.4 in [1). Let $G=(V, E)$ be a simple graph. Then, $\mathrm{M}(G) \leq \mathrm{Z}(G)$.
Proof. For the sake of contradiction, suppose that $\mathrm{M}(G)>\mathrm{Z}(G)$. Then, there exists an $A \in \mathcal{S}(G)$ such that nullity $(A)>\mathrm{Z}(G)$. Let $C \subseteq V$ denote a zero forcing set of G such that

$$
|C|=\mathrm{Z}(G)<\operatorname{nullity}(A) .
$$

Then, Lemma 1.3 implies that there is a non zero vector \mathbf{v} in the null space of A such that $v_{i}=0$ for all $i \in C$. However, this contradicts Proposition 1.1.

References

[1] AIM Minimum Rank - Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra and its Applications, 428 (2008), pp. 1628-1648.
[2] L. Hogben, J. C.-H. Lin, and B. Shader, Inverse Problems and Zero Forcing for Graphs, AMS, Providence, Rhode Island, 2022.

