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1 Key Topics

Today, we continue our proof that the zero forcing number of a graph is an upper bound on its maximum
nullity. For further information and references, see [2].

Let G = (V,E) be a simple graph. Recall that zero forcing is a coloring game on G where an initial set
of colored vertices can force non-colored vertices to become colored. In particular, a colored vertex u can
force a non-colored vertex v if v is the only non-colored neighbor of u.

Last time we applied the game of zero forcing on G to the process of forcing zeros in a null vector of
A ∈ S(G). As an example, consider the zero forcing game shown in Figure 1. Note that

C = {1, 5, 6}, C [1] = {1, 4, 5, 6}, C [2] = {1, 2, 4, 5, 6}, C [3] = {1, 2, 3, 4, 5, 6}.
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Figure 1: Zero-forcing game on a graph

Let A ∈ S(G), where G is the graph in Figure 1, and let x be a null vector of A, where xi = 0 for all
i ∈ C. Then,

A =


d1 a12 a13 0 0 0
a21 d2 a23 a24 0 0
a31 a32 d3 0 0 0
0 a42 0 d4 a45 a46
0 0 0 a54 d5 0
0 0 0 a64 0 d6

 and x =


0
x2

x3

x4

0
0

 .

Furthermore, row 5 of Ax = 0 implies that a54x4 = 0, which further implies that x4 = 0. Let

x[1] = [0, x2, x3, 0, 0, 0]
T .

Then, row 4 of Ax[1] = 0 implies that a42x2 = 0, i.e., x2 = 0. Let

x[2] = [0, 0, x3, 0, 0, 0]
T .

Then, row 2 of Ax[2] = 0 implies that a23x3 = 0, i.e., x3 = 0. Therefore, x = 0.
In general, we have the following result.

Proposition 1.1. Let G = (V,E) be a simple graph and let C ⊆ V denote a zero-forcing set of G. Also, let
A ∈ S(G) and let x denote a null vector of A such that xi = 0 for all i ∈ C. Then, x = 0.
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1.1 Zero Forcing and Maximum Nullity

It turns out that Proposition 1.1 implies a bound on the nullity of a matrix A ∈ S(G). To make this
connection, we first consider the following observation.

Observation 1.2. If U and V are subspaces of Rn and dimV > n−dimU , then U and V intersect non-trivially,
i.e., there exists a non-zero x ∈ U ∩ V .

As an illustration of Observation 1.2, note that every 2 dimensional subspace of R3 is a plane that contains
the origin. If U and V are both planes in R3, then they must intersect at infinitely many points.

Lemma 1.3. Suppose α ⊆ {1, . . . , n} with |α| < k and U is a subspace of Rn with dimU = k. Then, U
contains a non zero vector v, where vi = 0 for all i ∈ α.

Proof. Let V denote the subspace of vectors v, where vi = 0 for all i ∈ α. Let S = {ej : j /∈ α}. Then, S
forms a basis for V and it follows that

dimV = |S| > n− k,

since |α| < k. By Observation 1.2, U and V intersect non-trivially. Therefore, there exists a non zero vector
v in U such that vi = 0 for all i ∈ α.

We are now ready to prove that the zero forcing number of a graph is an upper bound on the maximum
nullity.

Theorem 1.4 (Proposition 2.4 in [1]). Let G = (V,E) be a simple graph. Then, M(G) ≤ Z(G).

Proof. For the sake of contradiction, suppose that M(G) > Z(G). Then, there exists an A ∈ S(G) such that
nullity (A) > Z(G). Let C ⊆ V denote a zero forcing set of G such that

|C| = Z(G) < nullity (A) .

Then, Lemma 1.3 implies that there is a non zero vector v in the null space of A such that vi = 0 for all
i ∈ C. However, this contradicts Proposition 1.1.
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