Graph Theory

Thomas R. Cameron

April 5, 2024

1 Key Topics

Today, we discuss computational approaches to the zero forcing number of a graph.
Let $G=(V, E)$ be a simple graph. Recall that zero forcing is a coloring game on G where an initial set of colored vertices can force non-colored vertices to become colored. In particular, a colored vertex u can force a non-colored vertex v if v is the only non-colored neighbor of u. An initial set of colored vertices C is a zero forcing set if repeated application of the color change rule results all of V being colored. The zero forcing number $\mathrm{Z}(G)$ is the minimum cardinality of a zero forcing set.

In [1], the authors prove that the maximum nullity $\mathrm{M}(G)$ is bounded above by the zero forcing number $\mathrm{Z}(G)$. Recall that

$$
\mathrm{M}(G)=\max \{\text { nullity }(A): A \in \mathcal{S}(G)\}
$$

Furthermore, in 3, the authors show that $\mathrm{Z}(G)=\mathrm{M}(G)$ for all G of order $n \leq 7$. For this reason, the computation of the zero forcing number of a graph become of great interest to the graph theory and combinatorial optimization community.

1.1 Brute Force

One way to compute the zero forcing number of a graph is to check all possible subsets of vertices, play the game of zero forcing, and record the smallest possible zero forcing set. For a graph of order n, there are 2^{n} subsets of vertices; hence, this brute force method is not suitable for large graphs. In 2014, an improved brute force search was developed using dynamic programming; this method was dubbed the wavefront algorithm, see 2 for a detailed analysis of this algorithm.

These algorithms are available to you in Sage, see https://sage.math.iastate.edu/home/pub/84/.

1.2 Integer Programming

In [2] the first integer programming models were developed for zero forcing. These models identify an objective function and set of constraints that describe the game of zero forcing. Then, a powerful solver such as Gurobi can be used to optimize the objective function over the given set of constraints. For example, the model in 1a) 1 h$)$ is known as the infection model, where T is the maximum number of time steps needed
to complete the game of zero forcing.

$$
\begin{align*}
\operatorname{minimize} \quad & \sum_{v \in V} s_{v} \tag{1a}\\
\text { subject to } \quad s_{v}+\sum_{a \in A: a=(u, v)} y_{a} & =1, \quad \forall v \in V, \tag{1b}\\
x_{u}-x_{v}+(T+1) y_{a} & \leq T, \quad \forall a=(u, v) \in E, \tag{1c}\\
x_{w}-x_{v}+(T+1) y_{a} & \leq T, \quad \forall a=(u, v) \in E, \forall w \in N(u) \backslash\{v\}, \tag{1d}\\
s & \in\{0,1\}^{n}, \tag{1e}\\
x & \in\{0,1, \ldots, T\}^{n} \tag{1f}\\
y & \in\{0,1\}^{2 m} \tag{1g}\\
z & \in\{0,1, \ldots, T\} \tag{1h}
\end{align*}
$$

Note that the s_{v} variables determine which vertices are in the zero forcing set; the x_{v} variables determine when a vertex is colored; and the y_{a} variables determine what forcings occur.

As an example, consider the zero forcing game shown in Figure 1. Note that

$$
C=\{1,5,6\}, C^{[1]}=\{1,4,5,6\}, C^{[2]}=\{1,2,4,5,6\}, C^{[3]}=\{1,2,3,4,5,6\}
$$

Figure 1: Zero-forcing game on a graph
Moreover, the following variables form a feasible solution for the infection model:

$$
\begin{align*}
s & =\{1,0,0,0,1,1\} \tag{2}\\
x & =\{0,2,3,1,0,0\} \tag{3}\\
y & =\{0,0,0,0,1,0,0,1,0,1,0,0\} \tag{4}
\end{align*}
$$

Next week we will discuss the fort cover model for zero forcing, which is shown in (5a)-5c).

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{v \in V} s_{v} \\
\text { subject to } & \sum_{v \in F} s_{v} \geq 1, \quad \forall F \in \mathcal{F}_{G} \\
& s \in\{0,1\}^{n} \tag{5c}
\end{array}
$$

2 Exercises

1. Verify that the variables in (2)-(4) are feasible solutions to the infection model.

References

[1] AIM Minimum Rank - Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra and its Applications, 428 (2008), pp. 1628-1648.
[2] B.Brimkov, C. C. Fast, and I. V. Hicks, Computational approaches for zero forcing and related problems, European Journal of Operational Research, 273 (2019), pp. 889-903.
[3] L. DeLoss, J. Grout, L. Hogben, T. McKay, J. Smith, and T. Tims, Techniques for determining the minimum rank of a small graph, Linear Algebra Appl., 432 (2010), pp. 2995-3001.

