## Submitted Publications

**T. R. Cameron, S. Charmot, and J. Pulaj**. Diameter polytopes of feasible binary programs,*Submitted to Journal of Optimization Theory and Applicatoins*

**T. R. Cameron, S. Charmot, and J. Pulaj**. Diameter polytopes of feasible binary programs,*Submitted to Journal of Optimization Theory and Applicatoins*

**A. Abiad, B. Brimkov, J. Breen, T. R. Cameron, H. Gupta, R. R. Villagran**. Constructions of cospectral graphs with different zero forcing numbers,*Electron. J. Linear Algebra*, 38: 280-294, doi.org/10.13001/ela.2022.6737**T. R. Cameron and S. Graillat**. On a compensated Ehrlich-Aberth method for the accurate computation of all polynomial roots,*Electron. T. Numerical Analysis*, 55: 401-423, 2022, doi:10.1553/etna_vol55s401**T. R. Cameron, H. T. Hall, B. Small, and A. Wiedemann**. On digraphs with polygonal restricted numerical range,*Linear Algebra Appl.*, 642: 285-310, 2022, doi.org/10.1016/j.laa.2022.02.034, preprint**T. R. Cameron, S. Charmot, and J. Pulaj**. On the linear ordering problem and the rankability of data,*Foundations of Data Science*, 3(2): 133-149, 2021, doi.org/10.3934/fods.2021010**T. R. Cameron, M. D. Robertson, and A. Wiedemann**. On the restricted numerical range of the Laplacian matrix for digraphs,*Linear Multilinear Algebra*, 69(5): 840-854, 2021, doi.org/10.1080/03081087.2020.1748853, preprint**T. R. Cameron, A. N. Langville, and H. C. Smith**. On the graph Laplacian and the rankability of data,*Linear Algebra Appl.*, 588: 81-100, 2020, doi.org/10.1016/j.laa.2019.11.026, preprint**T. R. Cameron and P. J. Psarrakos**. On Householder sets for matrix polynomials,*Linear Algebra Appl.*, 585: 105-126, 2020, doi.org/10.1016/j.laa.2019.09.037, preprint**T. R. Cameron and P. J. Psarrakos**. On Descartes' rule of signs for matrix polynomials,*Operators and Matrices*, 13 (3): 643-652, 2019, doi.org/10.7153/oam-2019-13-48, preprint**T. R. Cameron and T. Chartier**. Finite precision in an infinite world,*Math Horizons*, 27 (1): 12-14, 2019, doi.org/10.1080/10724117.2019.1611061**T. R. Cameron**. The determinant from signed volume to the Laplace expansion,*Amer. Math. Monthly*, 126 (5): 437-447, 2019, doi.org/10.1080/00029890.2019.1577669**T. R. Cameron**. An effective implementation of a modified Laguerre method for the roots of a polynomial,*Numer. Algorithms*, 82 (3): 1065-1084, 2019, doi.org/10.1007/s11075-018-0641-9, preprint**T. R. Cameron**. On the reduction of matrix polynomials to Hessenberg form,*Electron. J. Linear Algebra*, 31: 321-334, 2016, doi.org/10.13001/1081-3810.3011**T. R. Cameron**. Spectral bounds for matrix polynomials with unitary coefficients,*Electron. J. Linear Algebra*, 30: 585-591, 2015, doi.org/10.13001/1081-3810.2911