**T. R. Cameron, S. Charmot, J. Pulaj**. Diameter polytopes of feasible binary programs, *Submitted to Journal of Optimization Theory and Applicatoins*
**T. R. Cameron, S. Charmot, J. Pulaj**. On the Linear Ordering Problem and the Rankability of Data, *Submitted to Foundations of Data Science*

**T. R. Cameron, M. D. Robertson, and A. Wiedemann**. On the restricted numerical range of the Laplacian matrix for digraphs, *Linear Multilinear Algebra*, 1-15, 2020, doi.org/10.1080/03081087.2020.1748853, pdf
**T. R. Cameron, A. N. Langville, and H. C. Smith**. On the graph Laplacian and the rankability of data, *Linear Algebra Appl.*, 588: 81-100, 2020, doi.org/10.1016/j.laa.2019.11.026, pdf
**T. R. Cameron and P. J. Psarrakos**. On Householder sets for matrix polynomials, *Linear Algebra Appl.*, 585: 105-126, 2020, doi.org/10.1016/j.laa.2019.09.037, pdf
**T. R. Cameron and P. J. Psarrakos**. On Descartes' rule of signs for matrix polynomials, *Operators and Matrices*, 13 (3): 643-652, 2019, dx.doi.org/10.7153/oam-2019-13-48, pdf
**T. R. Cameron and T. Chartier**. Finite precision in an infinite world, *Math Horizons*, 27 (1): 12-14, 2019, doi.org/10.1080/10724117.2019.1611061
**T. R. Cameron**. The determinant from signed volume to the Laplace expansion, *Amer. Math. Monthly*, 126 (5): 437-447, 2019, doi.org/10.1080/00029890.2019.1577669
**T. R. Cameron**. An effective implementation of a modified Laguerre method for the roots of a polynomial, *Numer. Algorithms*, 82 (3): 1065-1084, 2019. doi.org/10.1007/s11075-018-0641-9, pdf
**T. R. Cameron**. On the reduction of matrix polynomials to Hessenberg form, *Electron. J. Linear Algebra*, 31: 321-334, 2016, doi.org/10.13001/1081-3810.3011
**T. R. Cameron**. Spectral bounds for matrix polynomials with unitary coefficients, *Electron. J. Linear Algebra*, 30: 585-591, 2015, doi.org/10.13001/1081-3810.2911