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Abstract Two common strategies for computing all roots of a polynomial
with Laguerre’s method are explicit deflation and Maehly’s procedure. The
former is only a semi-stable process and is not suitable for solving large degree
polynomial equations. In contrast, the latter implicitly deflates the polynomial
using previously accepted roots and is, therefore, a more practical strategy
for solving large degree polynomial equations. However, since the roots of a
polynomial are computed sequentially, this method cannot take advantage of
parallel systems. In this article, we present an implementation of a modified
Laguerre method for the simultaneous approximation of all roots of a polyno-
mial. We provide a derivation of this method along with a detailed analysis
of our algorithm’s initial estimates, stopping criterion, and stability. Finally,
the results of several numerical experiments are provided to verify our analysis
and the effectiveness of our algorithm.
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1 Introduction

In the mid-1800’s, Laguerre first published his root-finding method in Racines
d’une Équation Algébrique and it was later republished in Oeuvres de Laguerre
in 1898 [21]. Since then, research on modifications, generalizations, and anal-
ysis of Laguerre’s method has permeated the mathematical literature [10,12,
17,20,24,34,36,38]. In addition, Laguerre’s method has been applied to the
matrix and polynomial eigenvalue problem [15,22,23,30].
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Despite a significant amount of attention in the literature, we are only
aware of two popular software packages that employ Laguerre’s method to
solve for the roots of a polynomial: zroots from Numerical Recipes and C02AFF
from the NAG library [13,26,28,35]. Both zroots and C02AFF use forward
deflation to ensure that subsequent iterations tend to a different root. How-
ever, zroots does nothing to ensure that the roots are computed in ascending
order of absolute value, which is vital for the backward stability of forward
deflation [40]. In contrast, the NAG library routine C02AFF uses a modified
Laguerre method that was first proposed by Smith and guarantees the roots
are computed in ascending order of absolute value [38]. For this reason, the
routine C02AFF is more reliable than zroots.

Modern-day polynomial root problems, such as those that stem from com-
puter algebra applications or digital signal processing, require software that
can solve for the roots of a polynomial of degree well above 100 and some-
times on the order of several thousand or higher [29,37]. Therefore, an explicit
deflation strategy such as forward deflation used by zroots and CO2AFF is
not suitable for solving today’s polynomial root problems. Indeed, explicit de-
flation is at best a semi-stable process since the cumulative effect after many
steps may result in a significant loss of accuracy [19]. We tested this notion on
the C02AFF routine using polynomials with random coefficients; for polyno-
mials of degree higher than 500, the routine would often fail to converge and
continue to run for minutes on end. This test serves as the impetus for our
research on implicit deflation strategies that help make Laguerre’s method a
suitable option for solving large degree polynomial equations.

There have been several implicit deflation strategies proposed for Laguerre’s
method [17,25,33,34]. They differ from the explicit deflation strategies since
they result in a modification of Laguerre’s method rather than a change to the
underlying polynomial. The modifications proposed in [17,34] are mathemati-
cally interesting: They have local fourth-order, or higher, convergence and can
be run in parallel. However, these methods are not reliable in practice. In [24],
it was noted that convergence could be quite slow when two approximations
are closer to each other than to a root. This situation frequently arises when
dealing with high degree polynomials. Therefore, these methods may only be
suitable for iterative refinement. Modifying Laguerre’s method using Maehly’s
procedure [25] is far more practical and has been used to solve matrix and
polynomial eigenvalue problems [22,30]. However, this method computes the
roots of a polynomial sequentially and, therefore, cannot take advantage of
parallel systems.

In contrast, the family of methods derived in [33] allow for the simultaneous
approximation of all roots of a polynomial. These methods have local fourth-
order convergence and computationally verifiable conditions that guarantee
their convergence for simple roots [32]. We are particularly interested in the
member of this family that is analogous to Laguerre’s method. We will demon-
strate that this method has a workload that is well-suited for data-parallelism
and use it to develop an algorithm that is effective for solving large degree
polynomial equations.
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The outline of this article is as follows: In Section 2 we derive an instance of
the modified Laguerre method from [33] that we use to form an algorithm for
the computation of all roots of a polynomial. In Sections 2.1–2.3, we provide a
detailed analysis of the algorithm’s initial approximations, stopping criterion,
and stability. Finally, in Section 3, the results of several numerical experiments
are provided to verify our analysis and the effectiveness of our algorithm.

2 Derivation of the Method

Consider the polynomial p in variable z defined by

p(z) = a0 + a1z + · · ·+ amz
m, (1)

where a0am 6= 0. If a0 = 0, then deflate the polynomial and apply the follow-
ing method to the resulting polynomial. Denote by {z1, . . . , zm} the current
approximations to the roots {ζ1, . . . , ζm} of p. We are interested in updating
each approximation zj until it is “close enough” to the root ζj .

Laguerre’s method performs this update by solving a quadratic equation,
which we denote by Qj(z) = 0. For a derivation of Qj , see [36]. Note that if
the roots of p are real, then both solutions of Qj(z) = 0 are guaranteed to
be closer to ζj than the current approximation zj . This is what accounts for
the global convergence of Laguerre’s method when all roots are real. While
global convergence is not guaranteed when the roots are complex, it is our
experience that Laguerre’s method often performs just as well in this case. A
similar sentiment was noted by Parlett in [30].

We denote the roots of Qj by ẑj and note that

ẑj = zj −
m

Gj ±
√

(m− 1)(mHj −G2
j )
, (2)

where

Gj =
p
′
(zj)

p(zj)
=

m∑
i=1

1

(zj − ζi)
and Hj = −

(
p
′
(zj)

p(zj)

)′
=

m∑
i=1

1

(zj − ζi)2
. (3)

The update to zj is given by the nearest ẑj ; that is, we select the sign that
maximizes the denominator of the fraction in (2). We reference this update as
the correction term of zj .

In [33], two one-parameter families of iteration functions are derived from
the classical Weierstrass’ method and the Hansen-Patrick formula [16]. For a
particular choice of the parameter, a modified Laguerre method is obtained for
the simultaneous approximation of all roots of a polynomial. The derivation
n [33] allows for repeated roots, but we assume that all roots are simple since
we cannot expect to know the multiplicity a priori.
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In the case of simple roots, the modified Laguerre method from [33] is
equivalent to making the following changes to the terms in (3):

Gj =
p
′
(zj)

p(zj)
−

m∑
i=1
i6=j

1

(zj − zi)
and Hj = −

(
p
′
(zj)

p(zj)

)′
−

m∑
i=1
i6=j

1

(zj − zi)2
. (4)

Moreover, this is equivalent to applying Laguerre’s method to the function

fj(z) =
p(z)∏m

i=1
i 6=j

(z − zi)
, (5)

when computing the correction term of zj . Note that this is a classical approach
for implementing implicit deflation and it is at the core of the Aberth-Ehrlich-
Börsch-Supan method [1,7,11]. Essentially, we are creating poles at all other
root approximations and therefore avoiding unnecessary multiple convergences
to the same root.

As noted in Section 1, the method from [33] has strong virtues including
local fourth-order convergence and a parallel workload. We use this method
to form an algorithm for the computation of all roots of a polynomial.

The outline of our algorithm is as follows: We begin with the initial approx-
imations whose computation is discussed in Section 2.1. Then, for a fixed num-
ber of iterations, we loop through the array of approximations (z1, . . . , zm). If
zj is not close enough to ζj , which is quantified in Section 2.3, then we update
the approximation using (2) and (4), as described in Section 2.2. The loop
through the array of approximations is considered one iteration of our algo-
rithm. Each iteration can be implemented sequentially or in parallel and both
styles are outlined in Algorithm 1 and Algorithm 2, respectively. The former
has the benefit of a slightly improved convergence rate, whereas the latter will
have the obvious benefit of speedup.

Algorithm 1 Sequential Style
(z1, . . . , zm)← initial approximations via Algorithm 3
while i < itmax do

for j = 1 to m do
if zj is not close enough to ζj then

Compute roots of Qj(λ) via (2), using (4)
zj ← root that maximizes denominator of (2)

end if
end for
i← i+ 1

end while

The parfor loops in Algorithm 2 are well-suited for data-parallelism. That
is, the parallel tasks are executing the same function across different parts
of the dataset. The actual implementation and the effectiveness thereof de-
pends on the appropriate system support, such as a multiprocessor and an
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Algorithm 2 Parallel Style
(z1, . . . , zm)← initial approximations via Algorithm 3
while i < itmax do

parfor j = 1 to m do
if zj is not close enough to ζj then

Compute Gj and Hj via (4) and store
end if

end parfor
parfor j = 1 to m do

if zj is not close enough to ζj then
Use Gj and Hj to compute roots of Qj(λ) via (2)
zj ← root that maximizes denominator of (2)

end if
end parfor
i← i+ 1

end while

operating system that supports multithreading. For now, our focus is on the
implementation of the modified Laguerre method from [33] for solving large
degree polynomial equations. We consider the parallel implementation a fu-
ture step in our work, at which point we will consider other features such as
adaptivity and multi-precision as is done with MPSolve [6].

2.1 Initial Approximations

As with all iterative methods, the performance of the modified Laguerre method
from [33] depends considerably upon the quality of initial approximations. We
note that this method has a computationally verifiable condition for the guar-
anteed convergence to simple roots [32, Theorem 5.2]. However, this does little
for us in practice since if the test condition fails we are given no information
on how to improve our initial approximations. In this section, we outline a pro-
cedure originally due to Bini [4] for the computation of initial approximations
that, in practice, almost always converge to the roots of a polynomial.

In essence, this procedure selects complex numbers along circles of suitable
radii; what constitutes suitable radii can be formalized by applying Pellet’s
Theorem [31]. We state the theorem below and note that an elementary proof
can be found in [39].

Theorem 1 Let p be a polynomial as defined in (1). For each k such that
ak 6= 0, consider the equation

|ak|zk =

m∑
i=0
i 6=k

|ai|zi. (6)

(i.) If k = 0 there exists one real positive solution s0, and p has no roots of
moduli less than s0.
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(ii.) If 0 < k < m there are either no real positive solutions or two real
positive solutions tk ≤ sk. In the latter case, p has no roots in the open
annulus A(tk, sk) and exactly k roots of moduli less than or equal to tk.

(iii.) If k = m there exists one real positive solution tm, and p has no roots
of moduli greater than tm.

Let 0 = k1 < k2 < · · · < kq = m be the values of k for which (6) has
positive solution(s) and let

s0 = sk1 ≤ tk2 ≤ sk2 ≤ · · · ≤ tkq−1
≤ skq−1

≤ tkq = tm

be these solutions. Then, by [4, Theorem 5], any polynomial in the class

P(p) =

{
m∑
i=0

biz
i : |bi| = |ai|

}
has (ki+1 − ki) zeros in the closed annulus Ā(ski , tki+1

), for i = 1, . . . , q − 1,
and no zeros in the open annulus A(tki , ski), for i = 1, . . . , q.

While these inclusion results can be used to determine initial approxima-
tions for our iterative method, forming positive solutions of (6) requires solving
several polynomial equations. Therefore, we seek a strategy with a smaller time
complexity. To this end, define

uk = max
i<k

∣∣∣∣ aiak
∣∣∣∣1/(k−i) , k = 1, . . . ,m,

vk = min
i>k
ai 6=0

∣∣∣∣ aiak
∣∣∣∣1/(k−i) , k = 0, . . . ,m− 1,

u0 = 1/

(
1 + max

i>0

∣∣∣∣ aia0
∣∣∣∣) ,

v0 = 1 + max
i<m

∣∣∣∣ aiam
∣∣∣∣ .

(7)

Then it follows from [4, Theorem 4] that the positive solutions of (6) satisfy

uki ≤ tki ≤ ski ≤ vki , i = 1, . . . , q. (8)

Consider the set C = {(i, log |ai|), i = 0, 1, . . . ,m} and denote by

γ(C) = {(k̂i, log |ak̂i |), 0 = k̂1 < k̂2 < · · · < k̂q̂ = m}
the upper envelope of the convex hull of C. By [4, Theorem 6] we know that the

vertices of γ(C) satisfy ul ≤ vl if and only if l ∈ {k̂1, . . . , k̂q̂}. Therefore, by (8),

we have {k1, . . . , kq} ⊆ {k̂1, . . . , k̂q̂}, where the containing set can be computed
efficiently. In fact, a divide and conquer method is used in [4] to compute the
convex hull γ(C) in O(m logm) time. Since the set C is ordered with respect to
the first coordinate, we use Andrew’s monotone chain algorithm to compute
γ(C), which, in this case, has time complexity O(m) [2]. The pseudo-code for
computing the initial approximations is given in Algorithm 3, where i is the
imaginary unit and σ is any nonzero number [4].
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Algorithm 3 initial approximations

Compute k̂1, . . . , k̂q̂ via Andrew’s monotone chain algorithm.
for i = 1 to q̂ − 1 do
n = k̂i+1 − k̂i

uk̂i+1
=

∣∣∣∣ a
k̂i

a
k̂i+1

∣∣∣∣1/n
for j = 1 to n do

zk̂i+j
= uk̂i+1

e(
2π
n
j+ 2πi

m
+σ)i

end for
end for

2.2 Computing the Correction Term

The update of the root approximation zj requires the computation of the
correction term ẑj via (2), where Gj and Hj are defined in (4). In this section,
we outline a numerically stable method for computing the correction term.

Both summations in (4) represent a backward stable computation. Indeed,
each summand can be computed in at most 3 flops, each of which is exactly
rounded assuming the IEEE 754 standard [14]. Moreover, the summation is
well-known to be backward stable [18, Section 4.2]. Finally, polynomial evalu-
ation via the Ruffini-Horner rule is a backward stable computation. We outline
the latter result as it will be used when deriving our stopping criterion.

Let fl(p(ξ)) denote the computed value of p evaluated at ξ ∈ C using
floating-point arithmetic with machine precision µ. Then, if the Ruffini-Horner
rule is used, it follows from [4, Theorem 7] that we have

fl(p(ξ)) =

m∑
i=0

ai(1 + εi)ξ
i, (9)

where |εi| < ((2
√

2 + 1)i+ 1)µ+O(µ2). A similar result holds for the first and
second derivative of p.

The Ruffini-Horner method is prone to overflow, for instance, when a large
degree polynomial with positive coefficients is evaluated at ξ where |ξ| > 1. For
this reason, we introduce the reversal polynomial pR in the variable z defined
by

pR(z) = a0z
m + · · ·+ am−1z + am.

Let z 6= 0 and ρ = 1/z, then it is easy to verify that the following holds true

p
′
(z)

p(z)
= ρ

(
m− ρp

′

R(ρ)

pR(ρ)

)
,

−
(
p
′
(z)

p(z)

)′
= ρ2

m− 2ρ
p
′

R(ρ)

pR(ρ)
− ρ2

(
p
′

R(ρ)

pR(ρ)

)′ .

(10)

When |ξ| ≤ 1, we apply the Ruffini-Horner rule to the polynomial p, and its
first and second derivative. Otherwise, we apply the Ruffini-Horner rule to
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the reversal polynomial pR, and its first and second derivative, evaluated at
ρ = 1/ξ. In either case, it follows from (10) that we can easily obtain the
desired values needed for computing the correction term.

Now that the main components of Algorithm 1 have been established, we
analyze our algorithm’s time and space complexity. The initial approxima-
tions are computed via Algorithm 3 in O(m) time. Then, each approximation
is updated in O(m) time using the Ruffini-Horner rule as described above.
Assuming that itmax is fixed, i.e., does not depend on the degree of the poly-
nomial, it follows that Algorithm 1 can approximate all roots of a polynomial
in O(m2) time. Finally, we note that our algorithm has O(m) space complexity
since the required storage is the coefficients of the polynomial, its approximate
roots, and the corresponding backward error and condition number.

2.3 Stopping Criterion

Let ξ be an approximation of the root ζ for the polynomial p as defined
in (1), where all computations have been done in floating-point arithmetic with
machine precision µ. In this section, we derive the backward error of ξ and
the condition number of ζ, which are used to establish our stopping criterion
and provide a first-order bound on the forward error in our approximation.
Both results in Theorem 2 and Theorem 3 can be found in [8]. We provide
elementary proofs for completeness and clarity.

For i = 0, 1, . . . ,m, denote by ei an arbitrary representation of the toler-
ances against which the perturbations ∆ai to ai will be measured. Then the
perturbed polynomial in the variable z is defined by

∆p(z) = ∆a0 +∆a1z + · · ·+∆amz
m, (11)

and for convenience we define the sign of a complex number z by

sgn(z) =

{
z̄/|z|, z 6= 0,

0, z = 0.

The backward error of ξ represents the smallest perturbations ∆ai for
which (p + ∆p)(ξ) = 0. Therefore, a natural definition of the backward error
of ξ is given by

η(ξ) = min{ε : (p+∆p)(ξ) = 0, |∆ai| ≤ ε|ei|, i = 0, 1, . . . ,m}.

Note that when ei = 1 we are measuring the absolute backward error and
when ei = ai we are measuring the relative backward error.

Theorem 2 The backward error η(ξ) is given by

η(ξ) =
|p(ξ)|
α(ξ)

, (12)

where α(ξ) =
∑m
i=0 |ei||ξ|i.
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Proof First we show that the right hand side is a lower bound for η(ξ). To this
end, note that

|p(ξ)| = |∆p(ξ)|

≤
m∑
i=0

|ξ|i|∆ai| ≤ ε
m∑
i=0

|ξ|i|ei|.

Next, we show that this lower bound is attained by the perturbations

∆ai = − 1

α(ξ)
sgn(ξi)|ei|p(ξ).

To this end, note that

∆p(ξ) = −
m∑
i=0

1

α(ξ)
sgn(ξi)|ei|p(ξ)ξi

= − p(ξ)
α(ξ)

m∑
i=0

|ei||ξ|i = −p(ξ).

Therefore, (p+∆p)(ξ) = 0 and |∆ai|/|ei| = |p(ξ)|/α(ξ) for all i = 0, 1, . . . ,m.
ut

Motivated by the backward error analysis of the Ruffini-Horner rule in (9),
we let ei = ((2

√
2 + 1)i+ 1)ai. Then, if the approximate root satisfies

η(ξ) ≤ µ (13)

it follows that ξ is a root of (p + ∆p), where ∆p is defined in (11) and its
coefficients ∆ai are no bigger than εi from (9), for i = 0, 1, . . . ,m. Conversely,
if η(ξ) > µ, then ξ being a root of (p+∆p) implies that ∆ai is bigger than εi, for
some i = 0, 1, . . . ,m. Therefore, (13) denotes a viable stopping criterion that
guarantees iterations do not terminate until fl(p(ξ)) is no longer a reliable
computation for updating the approximate root ξ. Furthermore, if ξ is an
approximate root that satisfies (13), then the computation of ξ was backward
stable. There is no guarantee of backward stability for all polynomials since
convergence is not guaranteed. However, in practice, our algorithm almost
always performs in a backward stable manner, see Section 3.

As noted in Section 2.2, if |ξ| > 1 then we apply the Ruffin-Horner rule
to the reversal polynomial pR at ρ = 1/ξ in order to compute the correction
term. In this case, the backward error can be computed as follows

η(ξ) =
|pR(ρ)|
αR(ρ)

, (14)

where αR(ρ) =
∑m
i=0 |em−i||ρ|i. This result is easily verified by noting that

|pR(ρ)|
αR(ρ)

=
|ρ|m|p(1/ρ)|
|ρ|mα(1/ρ)

=
|p(ξ)|
α(ξ)

.
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The condition number of a root is a measurement of its sensitivity to
changes in the coefficients of p. Therefore, a natural definition of the condition
number of a nonzero simple root ζ is given by

κ(ζ, p) = lim sup
ε→0

{ |∆ζ|
ε|ζ| : (p+∆p)(ζ +∆ζ) = 0, |∆ai| ≤ ε|ei|, i = 0, 1, . . . ,m

}
.

Theorem 3 The condition number κ(ζ, p) is given by

κ(ζ, p) =
α(ζ)

|ζ||p′(ζ)| , (15)

where α(ζ) =
∑m
i=0 |ei||ζ|i.

Proof Note the following Taylor series expansions

p(ζ +∆ζ) = p(ζ) +∆ζp
′
(ζ) +O(∆ζ2)

and

∆p(ζ +∆ζ) = ∆p(ζ) +∆ζ∆p
′
(ζ) +O(∆ζ2).

Then the constraint (p+∆p)(ζ +∆ζ) = 0 implies that

∆ζ = − ∆p(ζ)

p′(ζ) +∆p′(ζ)
+O(∆ζ2).

Therefore,

|∆ζ|
ε|ζ| ≤

α(ζ)

|ζ||p′(ζ) +∆p′(ζ)| +
O(∆ζ2)

ε

and by taking the limit as ε→ 0 it follows that

κ(ζ, p) ≤ α(ζ)

|ζ||p′(ζ)| .

To show that this upper bound is attained, define ∆ai = −sgn(ζi)ε|ei|. Then
we have −∆p(ζ) = εα(ζ) and it follows that

|∆ζ|
ε|ζ| =

αζ

|ζ||(p′(ζ) +∆p′(ζ)| +
O(∆ζ2)

ε
.

Taking the limit as ε→ 0 gives the desired equality.
ut

Suppose that ζ > 1 and define ρ = 1/ζ. Then, we compute the condition
number as follows

κ(ζ, p) =
αR(ρ)

|m · pR(ρ)− ρ · p′R(ρ)| , (16)
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where αR(ρ) =
∑m
i=0 |em−i||ρ|i. This result is easily verified by noting that

α(ζ)

|z||p′(ζ)| =
|ζ|mαR(ρ)

|ζ||mζm−1pR(ρ)− ζm−2p′R(ρ)|

=
|ζ|mαR(ρ)

|ζ|m|m · pR(ρ)− ρ · p′R(ρ)| =
αR(ρ)

|m · pR(ρ)− ρ · p′R(ρ)| .

In summary of the stopping criterion, we compute the backward error
η(ξ) via (12), if ξ ≤ 1, or via (14) otherwise. If η(ξ) ≤ µ, then updates
of the root approximation ξ cease and we compute an approximation of the
condition number κ(ζ, p). This is done by replacing ζ with the approximate
root ξ in (15), if ξ ≤ 1, or in (16) otherwise. Both values are returned and
can be used to determine if the computation of ξ was backward stable and
the approximate sensitivity of ζ to changes in the coefficients of p. Finally, the
product η(ξ)κ(ζ, p) can be used to provide a first-order bound on the forward
error in the approximate root ξ.

3 Numerical Experiments

In this section, we present the results of several numerical experiments to
verify our analysis in Sections 2.1–2.3 and the effectiveness of Algorithm 1.
The results that follow are from tests run on an Intel Core i5 CPU running
at 2.7 GHz with 16GB of memory. All code was compiled using gfortran 8.2.0
with the -O2 optimization flag in the IEEE double-precision floating-point
standard. Fortran 90 source code of Algorithm 1, denoted FPML, and all tests
is available online at https://github.com/trcameron/FPML.

We provide comparisons with two open source Fortran 90 root solvers:
AMVW from [3] and Polzeros from [4]. We are interested in comparing against
AMVW as it is a recent advancement in eigenvalue methods for computing
the roots of a polynomial. It has guaranteed backward stability, assuming the
method converges, and quadratic time complexity. Note that we are comparing
against the most recent single-shift version of AMVW which is maintained
at https://github.com/eiscor/eiscor.

We are interested in comparing against Polzeros as it strongly motivated
the development of Algorithm 1 from the initial approximations to the stopping
criterion. Furthermore, Polzeros is driven by the Aberth-Ehrlich-Börsh-Supan
method, which is similar to the modified Laguerre method that we employ.
We recognize that Polzeros has been superseded by MPSolve [5,6] but both
make use of the Aberth-Ehrlich-Börsch-Supan method. Furthermore, MPSolve
is an adaptive multi-precision software written in C, and as of version 3.0, it is
implemented in parallel [6]. In the future, we are interested in writing source
code for Algorithm 2 in C and applying other features such as adaptivity and
multi-precision at which point we will compare against MPSolve. For now,
we are comparing against a Fortran 90 version of Polzeros, which is available
at https://jblevins.org/mirror/amiller/.

https://github.com/trcameron/FPML
https://github.com/eiscor/eiscor
https://jblevins.org/mirror/amiller/
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Table 1 Convergence Rate Tests

Iteration Error-1 Error-2 Error-3 Error-4 Error-5 Error-6

1 0.71 1.75 1.76 0.83 7.13 3.47
2 0.4 1.27 0.42 0.65 16.6 4.74
3 1.06 0.11 0.84 0.72 0.75 0.75
4 2.45 · 10−4 9.98 · 10−2 0.4 0.38 0.23 0.82
5 8.07 · 10−15 0.94 9.96 · 10−2 0.78 0.34 0.16
6 2.7 · 10−17 1.13 · 10−9 2.24 · 10−4 3.95 · 10−2 8.4 · 10−4 0.52
7 0 6.84 · 10−15 3.41 · 10−16 2.96 · 10−3 1.08 · 10−13 9.68 · 10−9

8 0 0 0 2.94 · 10−15 0 5.18 · 10−14

9 0 0 0 0 0 0

We also ran tests on the C02AFF routine from the NAG library [28]. For
large degree polynomials, the performance of C02AFF is not comparable with
the other root solvers tested. For this reason, we do not include the results of
C02AFF in the CPU benchmark tests. However, on small degree polynomials,
the C02AFF routine performs quite well, so we include the results of C02AFF
in the accuracy benchmark tests.

In Section 3.1, we demonstrate that the fourth-order convergence of Algo-
rithm 1 can be observed in practice. In Section 3.2, we provide several bench-
mark tests for comparing the elapsed CPU time of FPML with AMVW and
Polzeros when solving an array of polynomial equations. Finally, in Section 3.3,
we use accuracy benchmark tests that rely on special polynomials to test for
convergence difficulties and the deflation stability of FPML, AMVW, Polzeros,
and C02AFF.

3.1 Convergence Rate Tests

Six polynomials are used to test the local convergence rate of FPML. Each
polynomial has random roots in the unit circle of the complex plane. After
generating these random roots, we use the rootstocoeffs function from the
testing in [3] to form the coefficients of the corresponding polynomial. This
function relies on multi-precision software for Fortran [27].

Starting with the initial approximations outlined in Section 2.1, the er-
ror after each iteration is recorded as the maximum relative forward error in
our root approximations. The results are recorded in Table 1, where the col-
umn Error-i corresponds to the error in the root approximations for the ith
polynomial; the ith polynomial has degree 4 + 4i, for i = 0, 1, . . . , 5.

Note that fourth-order convergence (or better) can be observed in each
column of Table 1, which indicates a surprising feature of the modified La-
guerre method from [33]. Often, higher order methods do not display their
convergence rate in practice. For instance, the method in [17] has fourth-order
convergence, but the approximations must be so close to the roots before this
convergence rate will set in that it will rarely be noticed in double-precision
floating-point arithmetic.
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3.2 CPU Time Benchmark Tests

Our CPU benchmark tests are split into three categories of increasing diffi-
culty: The first category consists of polynomials with random coefficients and
the roots of unity. The second category consists of polynomials with well-
conditioned roots along a circular curve in the complex plane. The third cat-
egory consists of a polynomial with random roots in the unit circle and the
truncated exponential.

3.2.1 Category One

Each random polynomial has coefficients with real and imaginary parts uni-
formly distributed on the interval [−1, 1]. Figure 1 includes the elapsed time
measured in seconds and the error measured as the average maximum back-
ward error over all trials. The backward error is computed via (12), where ei
is defined as in (13). Iterations are run for polynomials of degree 80 to de-
gree 20480, doubling the degree on each step. The number of trials performed
ranges from 512 to 2, cutting in half as the degree doubles.

The roots of the polynomial zn − 1 are the n roots of unity: e
2πi
n j for

j = 1, . . . , n. Figure 1 includes the elapsed time measured in seconds and the
error measured as the average of the maximum relative forward error over all
trials. Again, iterations are run for polynomials of degree 80 to degree 20480,
doubling the degree on each step; the number of trials ranges from 512 to 2,
cutting in half as the degree doubles.

Note that the backward error of FPML and Polzeros is nearly identical;
similarly, the forward error is the same except for a slight spike from FPML
at degree 10240. In addition, the elapsed time verifies our time complexity
analysis of Algorithm 1, see Section 2.2, since both AMVW and Polzeros
are known to have a quadratic time complexity. Furthermore, the fact that
FPML is faster than Polzeros indicates that the fourth-order convergence of
the modified Laguerre method from [33] is making up for its additional cost per
iteration over the Aberth-Ehrlich-Börsh-Supan method. Finally, we note that
the growth in the backward error of AMVW is undesirable as it shows that
the resulting approximations ξ are roots of a polynomial whose coefficients are
more perturbed than the worst case scenario for fl(p(ξ)), see Section 2.3.

3.2.2 Category Two

Two polynomials are tested: p1(z) =
∑n
i=0(i+ 1)zi and p2(z) =

∑n
i=0

1
(i+1)z

i.

Both polynomials have well-conditioned roots that lie on a circular curve in
the complex plane. Figure 2 includes the elapsed time measured in seconds and
the error measured as the average maximum backward error over all trials. The
backward error is computed via (12), where ei is defined as in (13). Iterations
are run for polynomials of degree 80 to degree 10240, doubling the degree on
each step. The number of trials performed ranges from 512 to 4, cutting in
half as the degree doubles.



14 Thomas R. Cameron

10−3

10−2

10−1

100

101

102

T
im

e
(s

)

Random Coefficients

FPML
Polzeros
AMVW

102 103 104
10−16

10−15

10−14

10−13

Degree

B
ac

k
w

ar
d

E
rr

o
r

10−4

10−3

10−2

10−1

100

101

102

T
im

e
(s
)

Roots of Unity

FPML
Polzeros
AMVW

102 103 104

10−15

10−14

10−13

Degree

F
or
w
ar
d
E
rr
o
r

Fig. 1 Category One Testing

Note that the backward error for FPML, Polzeros, and AMVW range
between 10−16 and 10−15 when testing on p1(z). However, for the testing on
p2(z), there is a significant spike from Polzeros that indicates the failure to
converge for at least one root approximation. This somewhat surprising failure
from Polzeros persisted even after increasing the number of iterations.

3.2.3 Category Three

Two polynomials are tested: The first has random roots in the unit circle of the
complex plane; these polynomials are created as outlined in Section 3.1. The
second is the truncated exponential:

∑m
i=0 x

i/i!. The truncated exponential is
well-known to have ill-conditioned roots, especially for larger m. Also, random
roots in the unit circle can be ill-conditioned as a result of clustering. In
Figure 3, we test on polynomials of degree 10 to degree 100, increasing the
degree by 2 on each step. The number of trials is 512 for each degree, and
the error is measured as the average maximum backward error over all trials.
Again, the backward error is computed via (12), where ei is defined as in (13).

Note that the backward error of FPML and Polzeros are both within unit
roundoff. However, the backward error of AMVW ranges between 10−16 and
100 as the degree increases from 10 to 100.
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Table 2 Special polynomials tested by Chandrasekaran et al in [9]

Poly No. Description Deg. Roots

1 Wilkinson polynomial 10 1, . . . , 10
2 Wilkinson polynomial 15 1, . . . , 15
3 Wilkinson polynomial 20 1, . . . , 20
4 scale and shifted Wilkinson polynomial 20 −2.1,−1.9, . . . , 1.7
5 reverse Wilkinson polynomial 10 1, 1/2, . . . , 1/10
6 reverse Wilkinson polynomial 15 1, 1/2, . . . , 1/15
7 reverse Wilkinson polynomial 20 1, 1/2, . . . , 1/20
8 prescribed roots of varying scale 20 2−10, 2−9, . . . , 29

9 prescribed roots of varying scale -3 20 2−10 − 3, . . . , 29 − 3

10 Chebyshev polynomial 20 cos( 2j−1
40

π)

11 z20 + z19 + · · ·+ z + 1 20 ei
2j
21
π

Table 3 Special polynomials used to test MPSolve in [5]

Poly No. Description Deg. Roots

12 C. Traverso 24 known
13 Mandelbrot 31 known
14 Mandelbrot 63 known

3.3 Accuracy Benchmark Tests

The polynomials in Table 2 are tested in [3,9]. Many of these polynomials are
infamous for their ill-conditioned roots and are suitable for testing convergence
difficulties, e.g., Wilkinson and Chebyshev polynomial.

Polynomials taken from MPSolve [5] and tested in [3] are given in Table 3.
We take the roots computed by MPSolve to be exact. The polynomial pro-
vided by Carlo Traverso arises from the symbolic processing of a system of
polynomial equations and has multiple roots. The Mandelbrot polynomials
are defined recursively as follows: p0(z) = 1 and pj(z) = zpj−1(z)2 + 1, for
j = 1, 2, . . . , k, with m = 2k − 1.

The polynomials in Table 4 are from Jenkins and Traub [19] and are de-
signed to test convergence difficulties and the deflation stability of a root
finding method. The cubic polynomial p1(z) = (z − a)(z + a)(z − 1) ex-
amines the stopping criterion. Underflow is likely in the polynomial p3(z) =∏m
j=1(z−10−j). Thus, this polynomial may be used to test whether a stopping

criterion based on roundoff error fails. To test the performance of our method
on multiple or nearly multiple zeros we use the polynomials

p4(z) = (z − .1)3(z − .6)(z − .7),

p5(z) = (z − .1)4(z − .2)3(z − .3)2(z − .4),

p6(z) = (z − .1)(z − 1.001)(z − .998)(z − 1.00002)(z − .99999),

p7(z) = (z − .001)(z − .01)(z − .1)(z − .1 + ia)(z − .1− ia)(z − 1)(z − 10),

p8(z) = (z + 1)5.
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Table 4 Special Polynomials to test root finding algorithms from [19]

Poly No. Description Deg. Roots

15 p1(z) with a = 10−8 3 a,−a, 1
16 p1(z) with a = 10−15 3 a,−a, 1
17 p1(z) with a = 108 3 a,−a, 1
18 p1(z) with a = 1015 3 a,−a, 1
19 p3(z) 10 10−1, . . . , 10−10

20 p3(z) 20 10−1, . . . , 10−20

21 p4(z) 6 1/10 (m. 3), 5/10, 6/10, 7/10
22 p5(z) 10 1/10 (m. 4), 2/10 (m. 3), 3/10 (m. 2), 4/10
23 p6(z) 5 0.1, 0.998, 1.00002, 0.99999
24 p7(z) with a = 0 7 10−3, 10−2, 10−1 (m. 2), 1, 10
25 p7(z) with a = 10−10 7 10−3, 10−2, 10−1 − ia, 10−1 + ia, 1, 10
26 p7(z) with a = 10−6 7 10−3, 10−2, 10−1 − ia, 10−1 + ia, 1, 10
27 p8(z) 5 −1 (m. 5)

28 p9(z) 20 102e
2πi
10
j , 10−2e

2πi
10
j

29 p10(z) with a = 103 3 a, 1, 1/a
30 p10(z) with a = 106 3 a, 1, 1/a
31 p10(z) with a = 109 3 a, 1, 1/a

32 p11(z) with m = 15 60 e
πi
2m

j , 0.9e
πi
2m

j

33 p11(z) with m = 20 80 e
πi
2m

j , 0.9e
πi
2m

j

34 p11(z) with m = 25 100 e
πi
2m

j , 0.9e
πi
2m

j

The last convergence test is on the polynomial p9(z) = (z10−10−20)(z10+1020)
whose equimodular roots are known to cause difficulties for algorithms that
use powering techniques to separate zeros. Finally, we are interested in testing
the deflation stability of our method. To this we end, we use the polynomials

p10(z) = (z − a)(z − 1)(z − a−1),

p11(z) =

m−1∏
j=1−m

(z − e πi
2m j)

3m∏
j=m

(z − .9e πi
2m j).

The maximum relative forward error from FPML, AMVW, Polzeros, and
C02AFF when solving for the roots of all polynomials listed in Tables 2–
4 is recorded in Table 5. It is clear from Table 5 that FPML and Polzeros
have comparable accuracy. This is not surprising since the deflation strate-
gies of both these algorithms are similar and the stopping criterion is the
same. It is interesting to observe that there are several tests where the perfor-
mance of AMVW is significantly worse than FPML, Polzeros, and C02AFF
(e.g., Poly No. 6, 12, 16, 19, 20, 28). Finally, we note that there are several tests
where C02AFF is superior to FPML, AMVW, and Polzeros (e.g., Poly No.
1, 2, 3, 23). The superior performance of C02AFF is the effect of a sharper
stopping criterion.
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Table 5 Accuracy Benchmark Tests

Poly No. FPML Polzeros AMVW C02AFF

1 3.04 · 10−10 3.38 · 10−9 3.12 · 10−10 4.25 · 10−11

2 3.3 · 10−5 5.01 · 10−5 6.26 · 10−6 4.39 · 10−8

3 8.8 · 10−2 6.01 · 10−2 6.48 4.44 · 10−4

4 6.3 · 10−11 1.62 · 10−12 3.86 · 10−12 1.17 · 10−12

5 4.44 · 10−9 5.29 · 10−10 2.16 · 10−6 1.03 · 10−10

6 2.09 · 10−5 2.28 · 10−6 0.44 9.88 · 10−7

7 8.07 · 10−2 6.32 · 10−2 2.01 1.97 · 10−3

8 4.8 · 10−14 5.33 · 10−15 0.46 1.15 · 10−14

9 6.27 · 10−2 6.01 · 10−2 8.91 · 10−2 2.93 · 10−2

10 1.61 · 10−9 3.54 · 10−10 2.05 · 10−10 2.4 · 10−11

11 8.28 · 10−15 1 · 10−15 1.68 · 10−15 2.22 · 10−15

12 1.73 · 10−7 4 · 10−7 115 2.9 · 10−7

13 1.37 · 10−4 9.17 · 10−6 4.31 · 10−7 1.02 · 10−7

14 0.29 0.3 0.24 0.68
15 1.65 · 10−16 3.03 · 10−19 5.54 · 10−9 0
16 1.97 · 10−16 1.04 · 10−15 0.2 1.97 · 10−16

17 3.14 · 10−16 2.65 · 10−16 5 · 10−9 1.49 · 10−16

18 2.48 · 10−16 2.65 · 10−16 3.75 · 10−16 1.25 · 10−16

19 4.24 · 10−16 4.24 · 10−16 1.74 · 107 4.24 · 10−16

20 4.56 · 10−15 3.83 · 10−15 3.04 · 1016 6.35 · 10−16

21 2.86 · 10−5 2.68 · 10−5 5.98 · 10−5 2.05 · 10−5

22 1.58 · 10−3 1.65 · 10−3 1.4 · 10−2 1.35 · 10−3

23 1.49 · 10−4 6.08 · 10−5 2.52 · 10−5 4.46 · 10−7

24 2.82 · 10−5 2.92 · 10−5 1.41 · 10−4 1.6 · 10−5

25 2.82 · 10−5 2.92 · 10−5 1.41 · 10−4 1.6 · 10−5

26 1.93 · 10−5 2.29 · 10−5 8.32 · 10−5 1.28 · 10−5

27 2.35 · 10−3 2.11 · 10−3 1.19 · 10−3 0
28 2.54 · 10−15 1.59 · 10−16 1.01 3.29 · 10−15

29 5.17 · 10−23 4.34 · 10−22 2.27 · 10−16 0
30 9.69 · 10−16 1.16 · 10−16 2.33 · 10−16 0
31 1.38 · 10−15 1.19 · 10−16 4.14 · 10−16 0
32 1.89 · 10−7 2.01 · 10−7 5.87 · 10−8 1.14 · 10−7

33 4.94 · 10−7 5.42 · 10−7 1.98 · 10−7 7.23 · 10−7

34 7.04 · 10−7 4.57 · 10−7 2.97 · 10−7 1.36 · 10−6

4 Conclusion

The modified Laguerre method from [33] has strong virtues including lo-
cal fourth-order convergence and a workload that is well-suited for data-
parallelism. The former virtue is proved in [33, Section 4] and we demonstrate
the latter in Algorithm 2.
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We derived an instance of the modified Laguerre method in 2 and used
it to form an algorithm for the approximation of all roots of a polynomial,
which we outline in Algorithm 1. Furthermore, we provide a detailed analysis
of our algorithm’s initial approximations, stopping criterion, and stability in
Sections 2.1–2.3.

In Section 3, numerical experiments are provided to verify our analysis and
the effectiveness of our algorithm for solving large degree polynomial equations.
The experiments in Section 3.1 demonstrate that the fourth-order convergence
of Algorithm 1 can be observed in practice. The experiments in Section 3.2
verify the quadratic complexity of our algorithm and highlight its superior
speed in comparison to the root solvers AMVW from [3] and Polzeros from [4].
The experiments in Section 3.3 indicate the reliability of our algorithm even
in the face of difficult polynomial equations.

Finally, we note that all computations from FPML in Section 3 were back-
ward stable as the stopping criterion in (13) was satisfied by all root approx-
imations. Future research includes the implementation of Algorithm 2 along
with other features such as adaptivity and multi-precision.
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